How to start a solar farm? Step by step guide

In this article, we present the key steps how to start a solar farm. Building a solar photovoltaic power plant is certainly not easy. Most stages require the help of specialists, but before reaching out for their assistance, it is worth understanding the process of constructing a solar farm.

The stages of establishing a solar farm can be divided into design stages (site selection, administrative procedures, construction design) and execution stages (solar farm and accompanying infrastructure construction, electrical connections and testing). Following these stages, there are also aspects related to the effective management of the installation, which will impact the future of the farm.

Quick Facts:

  • In 2023, solar installations accounted for about 60% of the installed capacity in the entire renewable energy sector, according to the latest report from the Institute of Renewable Energy. This means that photovoltaics lead the way in the renewable energy sector.
  • By the end of 2023, Poland’s photovoltaic capacity reached 17.08 GW, saving around 23 million tons of CO2 emissions, according to the IEO report.
  • Based on photovoltaic installation capacity, we distinguish between small and large farms. A small farm is an installation with a capacity ranging from 50 kWp to 1 MW. A large photovoltaic installation has a capacity above 1 MW.
  • A photovoltaic power plant is an installation with a capacity of 1 MW or more.
  • To install a 1 MW photovoltaic power plant, approximately 2 hectares of land are required.

How to start a solar farm

How to start a solar farm? Design Stages of Creating a solar power plant

1. Choosing the Location: Finding the Right Land for Photovoltaics

Where to begin? The most important step is choosing the location for the photovoltaic farm, which must take into account many factors such as land suitability for the investment, sunlight availability, and proximity to the grid infrastructure. A suitable location for a photovoltaic farm is one that primarily:

  • Utilizes land with low agricultural value (requirements for solar farms include land of class IV or lower), which does not block areas capable of food production, simplifies administrative procedures, and also reduces the investment cost.
  • Is well-sunlit, where sunlight availability is the measure of the amount of solar energy reaching the Earth’s surface within a specified time, expressed in kilowatt-hours per square meter (kWh/m²) per day. Determining sunlight availability allows for a preliminary assessment of how much solar energy can be converted into electricity using photovoltaic panels, and thus a preliminary assessment of the photovoltaic farm’s profitability.

Global horizontal irradiation Poland Photovoltaic power potential

  • It allows for the proper placement of PV panels, which is best ensured by flat terrain; however, it is possible to optimally utilize land with a slight slope towards the south.
  • Proximity to grid infrastructure is another important factor, which means more favorable conditions for connecting the photovoltaic farm to the power grid. This directly impacts the construction costs and profitability of the photovoltaic farm. Locating the farm near existing transmission lines and transformer stations simplifies the procedures, so the recommended distance of the investment from the power grid is a maximum of 200 meters. Specific requirements for this distance may vary depending on local regulations and technical possibilities.
  • It is located at an appropriate distance from residential buildings or public utility areas. It is generally accepted that the minimum distance from buildings is about 100 meters, which minimizes potential nuisances related to noise and light reflections. Actual requirements may depend on local regulations and the specifics of the project.

Learn more about the locational conditions for building a photovoltaic farm: How to Choose the Best Location for Solar Panels

2. Project Procedures: Required Permits and Legal Regulations

If you have a plot of land that meets the initial criteria for establishing a photovoltaic farm, it is important to verify whether a solar farm can be built on that area. This involves considering legal regulations, such as environmental conditions, the local zoning plan, or other administrative decisions for the land.

Local Zoning Plan

If a local zoning plan  exists for the area, you must check whether it allows the construction of a photovoltaic farm. If the LZP permits the construction of solar farms, the investor must comply with all the conditions outlined in the plan. If the LZP does not allow for the construction of such farms, an application must be submitted to amend the plan, which can be a lengthy and tedious process. In the absence of an LZP, it is necessary to apply for a decision on building conditions.

Environmental Decision

Obtaining permits also involves securing an Environmental Decision (ED). This is required when the area covered by the outer edges of the panels exceeds 0.5 hectares in protected areas or 2 hectares in other areas. The requirements for obtaining an ED include conducting an Environmental Impact Assessment (EIA), which involves preparing an environmental report, holding public consultations, and obtaining opinions from various institutions. The decision is issued by the mayor, town mayor, or city president.

Building Permit

After obtaining the ED and meeting the requirements of the LZP, it is necessary to secure a building permit. This process includes preparing a detailed construction design and submitting an application to the appropriate architectural and construction administration authority. The building permit specifies the detailed building conditions for the photovoltaic farm, including the technical and legal requirements that the investment must meet.

Connection to the Power Grid

Required permits also include a document issued by the Distribution System Operator (DSO) or Transmission System Operator (TSO) that outlines the technical requirements for connecting the installation to the National Power System (NPS). This process involves a technical analysis, potential connection fees, and compliance with specified technical standards.

Read more:
How to Effectively Obtain Connection Conditions for a PV Farm?

License

For commercial photovoltaic farms and those with a capacity exceeding 1 MW, a license for the production and further sale of energy from the photovoltaic farm is required. Obtaining a license involves submitting an application to the Energy Regulatory Office (ERO). This process includes presenting a detailed construction project of the photovoltaic farm, technical documentation, and obtaining the previously mentioned administrative and environmental permits. The license is essential for the legal operation of the farm and the sale of energy from the photovoltaic farm to the power grid.

Solar Farm Construction Project: Formalities Before Construction

Before obtaining a building permit, it is necessary to prepare a photovoltaic installation project, which involves creating detailed technical documentation, including the site development plan, architectural and construction design, and technical design.

Site Development Plan

The first step is to create a site development plan, which includes the layout of photovoltaic panels, access roads, technical infrastructure, and other elements necessary for the operation of the solar farm. This plan must take into account the topography of the land, its sunlight exposure, and the existing infrastructure.

Architectural and Construction Design

The next component is the architectural and construction design, which includes detailed technical solutions for the supporting structures of the panels, foundations, fences, and other construction elements. This design must comply with all building codes and technical requirements.

Technical Design

Simultaneously, a technical design is developed, which contains detailed information on the electrical installation, monitoring systems, fire protection, and other technical systems necessary for the safe and efficient operation of the photovoltaic farm. This design also includes the technical specifications of the equipment used and the materials from which various installation elements will be made.

Read more:
Solar Farm Design – What You Need to Know?

Finding the right location, dealing with all the necessary administrative and legal steps, and creating various designs – the design process of setting up a photovoltaic farm is demanding. A sensible solution is to seek the help of specialists. At Electrum, we manage investment projects from concept to managing energy production from the photovoltaic farm.

Contact Us

How to Start a Solar Farm? Execution Stages of Creating a PV Farm

Once the building permit is obtained, the construction of the photovoltaic farm can begin, which involves several key stages. How do you start the construction?

1. Preparing the Site for Construction

The first step in building a photovoltaic farm is preparing the site for the installation of PV panels. This process includes removing any obstacles, leveling the ground, and preparing the foundations that will ensure the stability of the entire structure. The foundations must be properly designed and constructed to meet the requirements of the photovoltaic farm construction.

Installation of solar panels. Electrum Holding solar project

2. Installation of PV Panels

The next stage is the installation of the panels. The panels are mounted on the prepared foundations in a layout that maximizes the use of available sunlight. The construction of a photovoltaic panel farm must be precise to ensure the efficiency and durability of the solar power plant. The installation also includes setting up the supporting structures and systems to protect against various weather conditions.

3. Electrical Connections and Testing

After the panels are installed, the next step involves electrical connections and testing, which are crucial to confirm that the entire system is functioning correctly, meeting energy safety requirements, and complying with technical standards. The procedures related to electrical testing include verifying connections and checking the performance of the modules.

Once everything is ready, a visit to the Distribution System Operator is necessary to finalize the agreement and conduct the final inspection.

Read more in our guide: Solar farm construction: A Comprehensive Guide

How Long Does It Take to Build a Solar Farm?

The execution phase of the investment takes relatively little time. For a 1 MW farm, this stage typically takes about 2-3 months. The most time-consuming part is the design phase, with a strong focus on obtaining approvals and administrative decisions. The entire process (both phases) can take up to 2.5-3 years.

Solar farm installation by Electrum Holding

Costs of Building a Photovoltaic Farm and Financing the Investment

The cost of constructing a 1 MW solar farm depends on many factors. Estimates vary based on variables such as natural conditions, project support costs, material prices, construction costs, and the price of systems and technologies used to manage the farm. The cost of such a farm can range between 2,000,000 and 4,000,000 PLN (440,000 to 920,000 EUR.)

If sufficient capital is not available, there are several ways to finance the construction of a photovoltaic farm. Besides loans, one option for securing funds is to take advantage of photovoltaic subsidies. The development of renewable energy in Poland and the growth of photovoltaic farms has led to increased opportunities in this area. Available options include, among others, EU Funds for 2021-2027, as well as regional programs.

How much to start a solar farm?

The profitability of a photovoltaic farm depends on many factors, including total construction costs, financing methods, production efficiency, and energy sales conditions, making it unique to each project.

To illustrate the earnings from a farm, we can use a simplified calculation. Assuming annual production of 1,100 MWh and a price of 600 PLN per MWh, the annual revenue can be calculated as follows:

1,100 MWh/year * 600 PLN/MWh = 660,000 PLN/year After 8 years, the total revenue would be: 5,280,000 PLN (1,160,000 to 1,210,000 EUR).

A photovoltaic investment can be very beneficial, especially in the context of growing demand for renewable energy and the availability of various forms of funding. After a few years, which yield a return on investment, the farm enters a period of steady and stable income, which is the profit from the farm.

Different types of solar power plants generate different revenues. Depending on the purpose of the farm’s construction and the business model, the energy produced by the photovoltaic farm may be intended for self-consumption or for sale.

Monitoring and Management

Solar farm monitoring system

Professional management of a photovoltaic farm through effective monitoring ensures the maximization of profits, extension of the power plant’s lifespan, and helps reduce maintenance costs by enabling quick responses to potential issues.

Read more about solar farm monitoring methods at Electrum:

SCADA System on a Large-Scale PV Farm | Electrum Case Study

Now you know how to start a solar farm, and if you have any questions, feel free to contact us!

Wind turbine components and construction

If you are here to understand how a wind turbine for energy production works, we will help you as best as we can. We will go through what is hidden in the construction of a wind turbine. We will get to know the types of wind turbines responsible for the creation of wind energy. We will also learn about the construction of wind farms at Electrum and our largest wind farms.

People are looking for more and more information about the role wind turbines play in today’s energy mix. Looking at the data from the past year, it is no wonder that wind energy is attracting increasing interest.

According to a report prepared by the Global Wind Energy Council, “Global Wind Report 2024”, 2023 saw the highest number of new onshore turbine installations (a total of over 100 GW) and the second highest for offshore turbines (11 GW)! We have surpassed the symbolic milestone of 1 TW of installed capacity worldwide and, at the current pace, we expect to reach 2 TW before 2030. Wind turbines as a source of electricity will gain importance at a dizzying speed. It’s time to build power plants!

 

If you are interested in the wind farm construction service, check out: Wind farm construction 

wind turbine components - parts. Electrum Holding photo

How a wind turbine works to produce wind energy

How is wind energy generated? Wind turbines convert wind into mechanical energy and then into electrical energy. This process begins with the rotor, which rotates under the influence of the wind. The mechanical energy generated in this way is then transferred to a wind generator, which converts it into electrical energy.

A key element in the efficiency of wind turbines are the turbine blades, which must be properly designed to make the most of the available wind.

Types of turbines can vary depending on the application, power, and design. The most common types of wind turbines are divided into vertical-axis and horizontal-axis turbines.

History of wind turbines

The history of wind turbines dates back to ancient times – the first windmills were used to grind grain and pump water. Modern turbines began to develop in the 20th century, evolving from small units on farms to large installations responsible for generating wind energy on a large scale.

The first wind turbine designed to generate electricity was built by Charles F. Brush in 1887 in Cleveland, Ohio, USA. This turbine was a huge, 18-meter windmill with wooden blades and had a power of 12 kW. It was the first attempt in history to use wind energy to produce electricity on a larger scale.

A more significant contribution to the development of technology was made by the turbine designed by the Danish inventor Poul la Cour in 1891. La Cour built several turbines in Denmark and conducted research on using wind energy to produce hydrogen, which was then used as an energy source. La Cour is considered one of the pioneers in wind technology.

The year 1941 is also important in the history of renewable wind energy. That year, the Smith-Putnam turbines with a capacity of 1.25 MW were built in the USA, which were the first wind turbines used on an industrial scale.

The development of technologies such as slow-speed turbines and medium-speed turbines or offshore turbines has significantly increased the efficiency of modern turbines.

Wind turbine components

When it comes to the construction of a wind turbine, we will focus on its most important elements. Among them are blades, rotor, tower, and nacelle.

View of the construction site during the erection of wind turbines.

The nacelle is the housing that contains all the key mechanical and electrical components that are the “heart” of the wind turbine. These elements are essential for the proper functioning of the turbine and include:

  • Wind generator with inverter, which converts mechanical energy into electrical energy.
  • Cooling system including fans and liquid cooling systems, which ensure the proper operating temperature of the generator and other components.
  • Control and monitoring systems, i.e., computers and electronic systems that manage the turbine’s operation, monitor its condition, and transmit data to the control center.
  • Transformer, which converts the voltage generated by the generator into a voltage suitable for transmitting energy to the grid.

The rotor is the part of the turbine with blades responsible for capturing wind energy.

What supports the nacelle and rotor at the appropriate height, allowing for effective use of the wind, is the tower. The tower is placed on a properly prepared foundation.

The turbine blades can be set on two axes – the more common horizontal axis or the less common vertical axis.

Horizontal-axis wind turbines are more efficient in steady wind directions. They dominate large wind farms in open spaces.

In vertical-axis designs, the rotor blades rotate around a vertical axis, which allows better use of the wind regardless of its direction. An example of such a wind turbine is the Darrieus turbine. Vertical wind turbines are increasingly appearing in urban spaces due to their compact design.

Wind turbine foundation

The foundation of a wind turbine is the most important element for the stability of the entire structure. Foundations are adapted to the geological and load conditions of a given location. Concrete foundations are most commonly used, although in the case of offshore turbines, pile foundations are often used. Pile foundations consist of many vertical load-bearing elements (so-called piles) that are driven or drilled deep into the ground.

A proper foundation ensures the safety and durability of the turbine, which is crucial for the efficient operation of wind power plants.

Height of a wind turbine

The height of the turbine is another key factor affecting its efficiency. The highest wind turbines exceed 200 meters in height, allowing them to harness stronger and more stable winds, thus generating more energy.

In general, the higher, the stronger the wind. This phenomenon results from the fact that winds at higher altitudes are less affected by terrain, vegetation, and other obstacles. As a result, wind speed usually increases with height, improving the efficiency of wind turbines. The tallest wind turbines in Poland reach 210 meters, and the tallest wind turbines in the world are located in China. The record was broken there with a height of 280 meters!

The height of the turbine is selected according to the project’s specifications and local wind conditions.

Read also:

Energy That Blows: The Potential of Wind Farms in Poland

Small wind power plant projects / mini wind power plants

However, in a world where locality and local self-sufficiency are gaining importance, it is not only the tallest and largest wind installations that matter. It is the small wind power plants / mini wind power plants that are gaining popularity as a way to produce renewable energy on a local scale. Small wind power plant projects can be implemented in various locations. Small-scale wind energy is associated with technologies such as H-type turbines and innovative aeromine turbines.

Construction of a wind turbine blade

Returning to the universal components of the turbine – another element of this puzzle is the turbine blades. Made of lightweight and durable composite materials, they must have the appropriate aerodynamic profile to make the most of wind energy. Turbine blades (also known as rotor blades) are designed to minimize air resistance and maximize the rotor’s rotational speed.

The blade manufacturing process is complex and involves advanced technologies that allow manufacturers to ensure their durability and reliability. Each blade undergoes rigorous quality testing, including strength and fatigue tests, to ensure that it will perform well for years in harsh weather conditions and be resistant to turbine damage. This process is monitored at every stage, and modern technologies – such as structural analysis and computer simulations – are used to optimize designs and improve rotor blade performance.

Mast and blades of a wind turbine at Electrum farm.

Wind turbine tower

The tower is the supporting structure of the turbine, holding the nacelle and rotor at the appropriate height. In onshore applications, it is usually made of steel. Concrete towers are often used in larger turbines (especially for offshore wind power plants) due to their high strength and stability. The tower must withstand loads from wind force, water force (offshore wind power plants), and the weight of the structure. There are different types of towers, including tubular and lattice towers, which are selected based on the project’s specifics and terrain conditions.

Wind turbine inverter

An inverter, also known as a converter, is an electronic device that converts direct current (DC) to alternating current (AC). Without an inverter, the energy generated by the turbine would be of little use to us. This is because it is generated in the form of direct current, while most power systems and devices operate on alternating current. The inverter allows the conversion of this energy into a form suitable for the power grid and for households and industry. Modern inverters can be equipped with advanced control and monitoring systems that optimize the conversion process and increase system efficiency. In the case of renewable wind energy, a converter is another term for an inverter.

Wind turbine blades

Blades are another term for rotor blades. They are crucial for the efficiency of wind turbines and the generation of renewable wind energy.

How do we build wind turbines at Electrum?

A wind power plant consists of turbines, converter and transformer systems that enable power transmission to the grid, and supporting infrastructure such as access roads and service stations.

At Electrum, we primarily bring large wind installations to life. One of them is the Potęgowo wind farm.

The Potęgowo wind farm consists of 81 turbines, which allow for the generation of 219 MW of power! It is the largest onshore wind power plant in Poland and one of the largest in Europe. It is estimated to help avoid the emission of 514,000 tons of carbon dioxide annually.

At Electrum, building a wind power plant involves respecting the lives of animals and local communities. When placing the turbines in Potęgowo, we carefully analyzed the migration routes and grouping, feeding, and nesting areas of birds to avoid interfering with them. Additionally, we ensured that the noise levels in any nearby towns did not exceed permissible norms.

Potęgowo wind farm. Electrum photo.

How is a wind turbine installed?

The installation of a wind turbine begins with site preparation and the construction of solid foundations. In the next stage, we transport and assemble the individual components such as tower segments, nacelle, and turbine rotor.

The tower is erected segment by segment. Next, the nacelle is mounted on top. The rotor blades are precisely attached to the hub, and the entire structure is connected to the power grid.

Each element is thoroughly tested to ensure proper operation and maximum efficiency. The process requires advanced equipment and the cooperation of many specialists. After the installation is completed, the turbine is commissioned and calibrated before being put into operation.

What is involved in servicing wind turbines?

Servicing involves regular inspections, maintenance, and repairs to ensure the proper operation of wind power plants. Servicing is crucial for optimizing efficiency and extending the lifespan – in other words, minimizing downtime and maximizing energy production for as long as possible.

Read more at: Wind turbine maintenance

Skip to content