Electrum and PAD RES will develop another solar project

PAD RES and Electrum Concreo will build a photovoltaic power plant complex with a total capacity of 130.4 MWp. The complex, named PV Stargard, will be located in the West Pomeranian Voivodeship. The agreement, signed by both companies in recent weeks, also includes the creation of an energy distribution system consisting of 63 km of MV and HV cable lines.

Farma fotowoltaiczna Electrum Concreo, a company operating within the Electrum group with a climate tech profile, has previously collaborated with PAD RES as a general contractor on several projects. It has previously completed the construction of the 35 MW Genowefa photovoltaic farm, located in central Poland, and is currently constructing two solar facilities with a total capacity of 117 MW in Sztum and Mikołajki.

The PV Stargard complex is another significant initiative within the portfolio of renewable energy projects in the PAD RES group, emphasizing our commitment to the development of green energy and active involvement in the energy transformation process,” evaluates Wojciech Jasiński, Director of Construction Department at PAD RES. “It is no coincidence that we invited Electrum to implement this project. This decision was influenced, among other things, by the successful cooperation in the implementation of previous contracts and understanding the complexity of the planned undertaking. We see that we share common goals – we want our projects to contribute to further transforming Poland towards a more sustainable energy future,” explains Wojciech Jasiński.

This is our next investment carried out jointly with PAD RES in Pomerania. Investments in this region are of particular importance to our business,” emphasizes Tomasz Słyż, Director of Implementation Team at Electrum Concreo. “We are pleased that through this implementation, we have the opportunity to work together with our partner towards the development of modern technologies for energy transformation and economic decarbonization,” adds Tomasz Słyż.

The PV Stargard photovoltaic power plants will cover an area of 176 hectares and generate energy equivalent to powering 69,000 households, thereby avoiding emissions of over 118,000 tons of carbon dioxide. The installation is expected to be operational in the first quarter of 2025.

 

About Electrum

Electrum Group is a leading Polish Climate Tech business based in Białystok, offering comprehensive solutions in the field of cutting-edge technology development, project construction, and management in the energy and information sectors. The technological maturity of its experts allows them to deliver products and services that respond to the evolving needs of the industry and businesses in line with the ongoing energy transformation. Electrum creates and implements solutions and builds projects based on the idea of an individual energy mix, striking a balance between the social and environmental responsibility of the business and its economic aspect.

You can find more about the Electrum Group on our social media channels on LinkedInFacebooku and Instagramie.

 

About PAD RES

PAD RES is a Polish developer of clean energy specializing in projects related to renewable energy, infrastructure investments, and commercial real estate. Founded in 2010, the company successfully manages the development of its investments from inception to the “ready for construction” or “ready for operation” stage. In September 2021, the majority of PAD RES shares were acquired by Griffin Capital Partners and Kajima Europe. The group plans to focus on further developing the PAD RES portfolio, which includes investments in photovoltaic and wind projects at various stages of development, both in the developer phase and ready for construction, with a total secured capacity exceeding 1 GW. Such a portfolio places the platform at the forefront of the developing national renewable energy sector.

How Energy Storage Systems Are Revolutionizing the Renewable Energy Market?

Energy Storage Systems on the Renewable Energy Market

Energy storage systems are becoming a key component in the revolution of the renewable energy market. For companies like Electrum, which specialize in solar solutions, solar energy storage systems open up new opportunities and transform how we utilize solar power.

In the following article, we will cover:

  • The revolution that energy storage systems have brought to photovoltaic technology in the renewable energy market.
  • The key advantages of these energy storage systems, as well as the challenges related to their selection and effective use.
  • The innovative MESH4U project, which addresses the growing need for optimizing energy storage and promoting sustainable energy sources on an international scale.
  • Comprehensive solar solutions offered by Electrum and their benefits for businesses and the environment.

Renewable Energy Instability: A Challenge for the Polish Energy Market

In the past decade, Poland has built thousands of wind and solar power plants with a combined capacity of over 24 GW. Unfortunately, renewable energy sources are characterized by significant instability due to seasonal wind patterns, sunshine mainly in the summer and only during daylight hours, and periodic droughts affecting river water levels.

Energy storage system. Electrum Holding photo.

Gravitational Energy Storage: An Innovative Solution

Gravitational energy storage systems could revolutionize the renewable energy market. These systems operate similarly to pumped-storage hydroelectric plants but replace water with steel blocks lifted by reversible electric motors using steel cables and pulleys. The main advantages of such storage systems are their consistently high efficiency and over 99.9% recyclability.

Learn about different methods of energy storage in the renewable energy sector: What are the ways of energy storage in Renewable Energy Sector? (electrum.pl)

Balancing Demand: The Role of Energy Storage

Energy storage systems are not only a means to balance electricity demand but also a tool for stabilizing power grids. During periods of overproduction, when demand is low, excess energy can be stored. When energy demand rises, storage systems can supply energy to the grid, helping to stabilize voltage and frequency.

Why Are Energy Storage Systems Crucial for Photovoltaics?

Energy storage systems are crucial for solar energy for several reasons:

  • Optimizing solar energy use: Energy storage systems allow businesses to store excess energy produced by solar panels during the day. This stored energy can be used later or during periods of insufficient sunlight.
  • Energy independence: With photovoltaic energy storage, businesses can become less dependent on traditional electricity suppliers, leading to greater energy independence and stability.
  • Cost savings: Although the initial cost of purchasing an energy storage system can be high, long-term savings can be substantial, especially for energy-intensive companies.

How to Choose an Energy Storage System for Solar Power Plant?

Selecting an energy storage system for solar power plant is crucial for effective use of solar energy. Consider the following factors:

  • Installation size: Take into account the size of the photovoltaic installation and the company’s expected energy needs.
  • Technology choice: There are various energy storage technologies. The right technology should match the client’s specific needs and requirements.
  • Cost vs. efficiency: When choosing an energy storage system, consider not only the price but also the efficiency and durability of the device to maximize investment returns.

Industrial Energy Storage and Its Impact on the Market

Industrial energy storage systems are becoming increasingly popular not only among photovoltaic companies but also in other industrial sectors. Their flexibility and ability to store large amounts of electricity make them a key element in building sustainable and efficient energy systems.

Impact of Energy Storage on Power Grid Stability

Energy storage systems can balance fluctuations in electricity production and demand. This is especially important for renewable energy sources, which are characterized by high instability.

Zero-Emission Direction: Energy Storage as a Key to Success

Energy storage systems enable increased connection capacities with minimal costs for expanding the power grid. This facilitates the transition to a zero-emission economy by increasing the share of renewable energy in the energy mix and phasing out conventional power generation. This should significantly reduce and stabilize energy prices in the country. The conclusion is clear: energy storage systems are a key element in the renewable energy revolution.

MESH4U Project

Electrum, in collaboration with partners, has introduced an innovative hybrid information-energy system that not only enhances the efficiency of electricity storage but also supports the balancing of renewable energy use. This solution stabilizes energy supplies for the Alu-forst manufacturing facility located near Białystok, which uses its own photovoltaic installation.

The MESH4U project, conducted as part of a European initiative in collaboration with the Fraunhofer Institute, Wrocław University of Technology, and other international partners, aims to ensure stable electricity supplies for other European factories.

Learn more:

Electrum has launched Poland’s first hybrid energy-informatics system integrating renewable energy and energy storage.

Project Benefits

One of the key benefits of implementing a hybrid energy-informatics system is reduced operational costs through optimized energy use and intelligent utilization of renewable energy sources.

Advanced algorithms and data analysis enable this solution to predict energy demand and manage production based on renewable energy availability. As a result, it contributes to reducing greenhouse gas emissions and promotes effective use of green energy on an international scale.

Effective Energy Storage System

The MESH4U project also addresses key questions about effective energy storage, becoming increasingly significant in the context of the popularization of green energy sources.

Its international scope and alignment with European energy strategies make it a venture of not only local but also global importance. Co-financed by the National Centre for Research and Development, this project is an important step towards sustainable development and competitiveness in the energy sector.

energy storage system

Solar plus Storage Systems – A solution for the future

At Electrum, we understand the importance of providing customers with comprehensive photovoltaic solutions. Our photovoltaic installation schemes with energy storage are tailored to each client’s specific needs and requirements, ensuring optimal performance and savings.

Read also: How Solar plus Storage Systems Work? – Electrum Holding

With solar and energy storage system, a company can achieve new heights in sustainable energy production while contributing to environmental protection and reducing operational costs.

Explore our services for more information on our comprehensive photovoltaic solutions for businesses.

Need comprehensive renewable energy solutions? Let’s talk:

Contact us

Energy That Blows: The Potential of Wind Farms in Poland

Wind is one of the cleanest and cheapest sources of renewable energy (RES). In Poland, where more than 70% of electricity comes from coal, the development of wind farms can be a key step towards a green transition and reducing greenhouse gas emissions. Wind farms are clusters of wind turbines that harness the power of the wind to generate electricity. How big is the wind energy potential in Poland and what are the benefits of building wind farms? 

According to a report by the Polish Wind Energy Association (PWEA), Poland has the potential to install more than 50 GW of onshore and offshore wind capacity by 2050. This means that wind could cover more than 40% of the country’s electricity needs. Currently, Poland has around 6 GW of onshore wind capacity and plans to build another 11 GW offshore by 2030. This makes Poland one of the leaders in the region in terms of wind energy development. 

The construction of wind farms has many benefits for the economy, the environment and society. Firstly, wind farms are a source of cheap and stable energy that does not depend on fossil fuel prices. According to PWEA, the cost of generating energy from wind onshore is around 200 PLN/MWh and offshore around 300 PLN/MWh, while the cost of energy from coal is around 350 PLN/MWh. Secondly, wind farms contribute to the reduction of CO2 emissions and other pollutants that have a negative impact on human health and climate. According to PWEA, onshore wind farms avoided more than 14 million tonnes of CO2 emissions in 2019, equivalent to the annual emissions of more than 7 million passenger cars. Thirdly, wind farms create new jobs and income for local communities. According to PWEA, the wind energy sector employed more than 12,000 people in 2019 and could create more than 77,000 new jobs by 2030. In addition, wind farms pay local taxes and fees, which can be used for infrastructure development, education, culture and environmental protection. 

Wind farms are therefore an important part of Poland’s RES build-up, which aims to increase the share of renewable energy to 23% by 2030 and to 50% by 2050. To achieve this, however, appropriate policy and regulation is needed to support investment and public acceptance of wind farms. Some of the challenges faced by the industry are legal restrictions, bureaucracy, public resistance and lack of grid infrastructure. Therefore, dialogue and cooperation between all stakeholders, including government, local authorities, investors, operators, NGOs and residents, is necessary. Only in this way can the full potential of wind energy be realised. 

Alternative Energy: New Solutions for Global Energy

Alternative Energy like wind farm or pumped-storage power plant Global Alternative Energy

In today’s times, as climate challenges become increasingly pressing, the development of alternative energy systems seems to be not only an option but a necessity. Technologies such as the solar farm construction and wind farm construction, which offer renewable and less harmful methods of energy production, are emerging to the forefront. But what exactly does this mean for our society and the global energy future? 

Jumping onto the Green Wave 

Let’s start from the basics – the RES construction (Renewable Energy Sources). In this field, general contractors of energy networks and general contractors of RES play a key role. Their work involves designing, implementing, and managing comprehensive technological solutions aimed at increasing the use of renewable energy sources. 

Photovoltaics and Wind – The Future of Energy 

One cannot speak of alternative energy without mentioning PV panels and wind power plants. These two energy sources are leading players in the RES industry. The construction of photovoltaic farms and construction of wind farms are not only ecological but also economical solutions. They reduce dependence on fossil fuels and decrease greenhouse gas emissions. 

Service and Maintenance – Key to Long-Term Success 

Another important aspect is the service of energy infrastructure, including the solar panel maintenance and wind turbine maintenance. Regular maintenance and repairs are necessary to ensure the continuity and efficiency of these installations. 

Introduction of Climate Tech

The term Climate Tech refers to technologies aimed at mitigating the effects of climate change. This includes comprehensive engineering solutions and comprehensive business solutions in the field of energy, combining technological innovations with practical business applications. 

Alternative Energy Summary 

By raising the issue of alternative energy, we open the doors to a world where energy systems are more sustainable, efficient, and environmentally friendly. What was once a distant vision is now becoming a reality, thanks to continuous innovations and commitment to comprehensive RES solutions. So, are we ready for these changes? Time will tell, but one thing is certain – the future of energy is green! 

Read also:

Climate Tech: Revolutionising Climate Technology

Alternative Energy: A New Path in Energy Production – Electrum Holding

Wind turbine maintenance: Essential for Peak Performance

About Wind Turbine Maintenance

Wind turbine maintenance is an essential service for anyone looking to maximize the potential and reliability of their wind farm. Regular inspection and repair of turbines are crucial to ensuring their optimal performance and long-lasting operation.

Wind turbine maintenance by Electrum Holding

Table of Contents

  • Why is Wind Turbine Maintenance So Important?
  • Benefits of Regular Wind Farm Maintenance
  • Comprehensive Maintenance Services
  • Wind Farm Services and Renewable Energy Monitoring
  • O&M Services and Asset Management
  • Proprietary Automation Solutions

Key Elements of Wind Turbine Maintenance:

  • Analysis of turbine type and model,
  • Age of the turbine,
  • Operational history,
  • Location,
  • Climate conditions, and
  • Compliance with legal and regulatory requirements.

Wind turbines are exposed to various factors such as:

  • Weather conditions,
  • Material wear,
  • Mechanical or electrical damage.

Thus, wind turbine maintenance is essential to keep turbines in good technical condition and ensure their efficiency for many years.

Read About One of Our Projects: Wind Farm Maintenance for Korytnica 82.5 MW

Why is Wind Turbine Maintenance So Important?

Wind turbine maintenance contributes to many environmental and economic benefits. Here are some of them:

  • Reduction of Harmful Gas Emissions: Wind energy does not require burning fossil fuels, resulting in a significant reduction in greenhouse gas emissions and air pollution.
  • Conservation of Natural Resources: As an unlimited energy source, wind power reduces dependency on the price and availability of fossil fuels.
  • Job Creation: The development of wind farms stimulates the local economy by creating new jobs.

What Are the Benefits of Regular Wind Farm Maintenance?

Regular wind farm maintenance:

  • Prevents failures,
  • Extends turbine lifespan,
  • Increases energy production,
  • And reduces operational costs.

Electrum wind turbine technicians on the turbine

Comprehensive Maintenance Services

Wind turbine maintenance offers a wide range of activities, including:

  • Inspection and Diagnostics: Detecting and assessing potential problems or damage.
  • Repair and Replacement of Parts: Restoring turbine functionality and safety.
  • Maintenance and Cleaning of Turbines: Ensuring optimal operation and extending turbine lifespan.
  • Modernization and Optimization: Improving efficiency and adapting to changing market and technological conditions.

Read Also: Wind Farm Maintenance: Innovations and Challenges

What Does Electrum Offer? – Wind turbine operation and maintenance

Electrum stands out in the market as a trusted leader in the service of energy systems, with a particular focus on renewable energy sources (RES). Our offering is comprehensive and tailored to the individual needs of clients, ensuring maximum efficiency and reliability of RES installations.

Wind Farm Services and Renewable Energy Monitoring

Our maintenance services are designed to ensure the continuous operation of your wind farm. We offer a full range of activities, from regular technical inspections and rapid response to potential failures to advanced analysis and optimization of system performance. With our experience and use of modern diagnostic tools, we can guarantee that your RES facilities will operate at the highest level.

Network Diagnostics with Centrix Evolution

Electrum provides clients with information about the technical condition of the infrastructure with Centrix Evolution. The Teleflex® locator allows precise fault location even within a radius of several kilometers from the power generator.

Learn More: Network Diagnostics with Centrix Evolution – Precision and Safety

O&M Services and Asset Management

Asset management and operational maintenance of RES installations are key elements of our offering. We specialize in ensuring the efficient and trouble-free operation of your energy assets. Our O&M and Asset Management services include support in administrative, legal, and tax areas, as well as warranty and insurance claims management, optimizing performance, and increasing investment profitability.

Proprietary Automation Solutions

The EMACS platform is our flagship technological innovation that enhances the efficiency and safety of wind farms. It is a multifunctional platform for managing energy facilities, combining the advantages of a classic SCADA system with business analysis tools. EMACS integrates, processes, and presents data from many information sources on a single cohesive platform, enabling quick diagnostics and remote wind farm management, as well as conducting advanced business analyses.

Why Choose Electrum as Your Wind Turbine Maintenance Partner?

Choosing Electrum as your wind turbine operation and maintenance partner is a decision that guarantees professionalism, innovation, and sustainable development. Our team of experts ensures the highest quality of service, using the latest technologies to deliver the best solutions for your wind farm. We operate in harmony with the environment, supporting green energy and contributing to building a better future.

Contact Us to learn more about how we can help you achieve your energy goals.

Wind Turbine Maintenance – An Investment That Pays Off

Investing in wind farm and turbine maintenance ensures the reliability and efficiency of your wind farm. This not only increases the value and attractiveness of the farm for investors and energy consumers but also guarantees that wind energy will serve people and the planet for many years.

Read Also:

Wind farm maintenance: Innovations and challenges in operation

Wind Farm Services – New Offering – Electrum Holding

Energy Infrastructure Service: Ensuring Stability of Energy Sources

Energy infrastructure comprises a set of devices and facilities used for generating, transmitting, distributing, and storing various types of energy, such as electricity, gas, petroleum, and CO2. This infrastructure is essential for ensuring access to energy for the population, economy, and environmental protection.

Ensuring the stability of energy sources is vital for economic, social, and ecological development. Stable energy sources guarantee the continuity of electricity supply, reduce the risk of failures, and prevent excessive use of natural resources. Therefore, regular servicing and modernization of energy sources, such as power plants, solar panels, wind turbines, and biogas plants, are necessary. Servicing energy sources involves checking their technical condition, replacing worn-out parts, repairing damages, and optimizing performance. The benefits of servicing energy sources include:

  • Enhancing the safety and reliability of the energy system,
  • Reducing the operational and maintenance costs of energy sources,
  • Improving the quality and purity of electric energy,
  • Reducing greenhouse gas emissions and other pollutants,
  • Extending the lifespan and increasing the profitability of energy sources.

Thus, servicing energy sources is not only a duty but also an investment in the future. Thanks to this, we can enjoy stable, affordable, and eco-friendly access to energy that powers our lives and activities.

Comprehensive Energy Solutions: Optimal Resource Utilization

Renewable energy sources (RES) are becoming an increasingly important component of the Polish and European energy systems. Their development is beneficial not only to the environment but also to the economy and society. However, RES also have certain limitations, such as dependence on weather conditions, variability in production, and low utilization of transmission infrastructure. To overcome these barriers and increase the efficiency and stability of RES, new and innovative solutions are needed. One such solution is cable pooling.

What is cable pooling?

Cable pooling is the sharing of energy infrastructure between different RES, such as wind and solar power plants. It involves using the secured transmission capacity allocated to one power plant to initiate another energy generation source in the same location. This way, available resources can be better utilized, and energy losses minimized. Cable pooling is particularly cost-effective when combining sources with different operating profiles, such as photovoltaics and wind. This can provide greater stability and reliability in energy supply, as different sources can complement each other depending on weather conditions and demand.

What are the benefits of cable pooling?

Cable pooling has many advantages, both for investors and the energy system. Some of these include:

  • Reduction in investment and operational costs – sharing transmission infrastructure can reduce the costs of building and maintaining new lines. Moreover, better utilization of transmission capacities can avoid or limit the need to pay fees for imbalance or for reserving power.
  • Faster development of RES projects – by using existing connections, new RES projects like wind or solar power plants can quickly obtain construction approval and become operational. This accelerates the energy transformation process and increases the share of RES in the energy mix.
  • Increased efficiency and stability of the energy system – cable pooling can better utilize available RES resources and reduce energy losses. Furthermore, by combining sources with different operating profiles, reliability and stability of energy supply can be increased, reducing the risk of power outages and ensuring greater system flexibility in responding to changes in demand and supply.
  • Minimization of environmental impact – sharing transmission infrastructure can reduce the negative environmental impact often associated with building new lines. It can also limit greenhouse gas emissions and air pollution by increasing the share of RES in energy production.

Comprehensive Renewable Energy Solutions: Transforming the Energy Industry

The transformation of the Energy Industry is a key challenge for Poland and the world, as it requires a change in the way electricity and heat are generated and distributed. Renewable energy sources, such as wind, sun, water, and biomass, offer many advantages, including lower greenhouse gas emissions, reduced fossil fuel consumption, and greater energy independence. However, to effectively utilize these sources, a comprehensive approach to planning the acquisition and generation of power is needed, taking into account their variability, dispersion, and costs.

A comprehensive approach to planning the acquisition and generation of power from renewable sources involves the integration of various technologies, systems, and strategies that ensure optimal use of resources and energy demand. Some of these elements include:

  • Development of smart grids, which enable communication and coordination between producers, consumers, and network operators, as well as automatic adjustment to changing conditions and behaviors.
  • Introduction of energy storage, which allows for the accumulation of excess energy during periods of low demand and its release during periods of high demand, increasing the flexibility and stability of the system.
  • Application of demand response systems, which involve encouraging or limiting energy consumption by consumers depending on the availability and price of energy, reducing peak demand and network load.
  • Use of information and communication technologies (ICT), which enable the collection, processing, and analysis of data on the state and operation of the energy system, improving its efficiency, safety, and quality.
  • Optimization of renewable energy installations management using modern systems such as EMACS. EMACS integrates data from various sources, such as inverters, meters, sensors, weather and energy market forecasts, and presents it in a clear and intuitive way. EMACS allows for real-time monitoring of renewable energy installations, analyzing their performance and profitability, optimizing their parameters, and planning maintenance. EMACS is also a tool for reporting and auditing, which facilitates compliance with legal and contractual requirements. Thus, EMACS is not only a SCADA system but also a business analysis system that helps owners and operators of renewable energy installations make better decisions and increase their competitiveness in the market.

The transformation of the Energy Industry is a long-term and complex process that requires the cooperation and commitment of all stakeholders, such as the government, private sector, social organizations, and citizens. However, it is necessary and possible to ensure sustainable development and a better quality of life for future generations.

Comprehensive Engineering Solutions: Creativity in Renewable Energy Development

Creativity is a key factor in the development of renewable energy sources (RES). It gives rise to new engineering solutions that enhance efficiency, reduce costs, and minimize negative environmental impact.

Some examples of creative projects related to RES include:

  • Artificial leaves that mimic the process of photosynthesis, producing oxygen and hydrogen from water and sunlight.
  • Flying wind turbines that harness stronger and more stable winds at high altitudes and transmit energy to the ground via cables.
  • Perovskite solar panels, which have the potential to achieve higher efficiency and lower cost compared to traditional silicon panels.

These and many other ideas illustrate how creativity supports the development of RES and provides innovative engineering solutions. Creativity is not only a source of inspiration but also a tool for problem-solving and creating a better world.

Example: Floating solar farms

Engineers and automation experts are constantly seeking new solutions like those mentioned above, as well as finding unconventional uses for existing solutions. Floating solar farms exemplify this approach and represent one of the latest trends in renewable energy. Here are some key facts about them:

  • Floating solar farms make use of water surfaces that are often underutilized or inaccessible for other purposes, such as recreation, tourism, or agriculture.
  • They exhibit higher efficiency compared to traditional land-based farms because they are cooled by the water and can track the movement of the sun.
  • Floating solar farms can also benefit the environment by reducing water evaporation, inhibiting algae growth, and preventing shoreline erosion.

If you are interested in innovations in the renewable energy sector, also read:

Wind farm maintenance: Innovations and challenges in operation

The Future of Renewable Energy in Poland: Innovations and Challenges

Energy Systems: The Future Vision in Renewable Energy Sources

energy systems Energy Systems and Devices Related to Renewable Energy

Renewable energy systems and devices are a crucial step toward sustainable and ecological development. Wind farms, as a part of the Polish energy system, are becoming an increasingly visible element of the landscape. At Electrum, we strive to create a sustainable energy future that delivers energy from alternative sources in a safe and environmentally friendly manner.

In this article, you will learn about:

  • The importance of energy devices and systems for the future of renewable energy.
  • The process of building wind farms as an investment in the national energy system.
  • The role of comprehensive energy solutions in modern energy systems.
  • The impact of innovative technology on the development of alternative energy.
  • The significance of wind farms for modern energy systems and their impact on sustainable development.

Building Wind Farms – An Investment in the National Energy System

The process of wind farms construction is an advanced project that requires:

Electrum, as a leader in the energy transition in Poland, guarantees the efficient execution of projects by leveraging technological maturity and innovative thinking.

Comprehensive Energy Solutions for Modern Energy Systems

Comprehensive energy solutions are crucial for integrating wind farms into Poland’s energy system. At Electrum, we specialize in designing, building, maintaining, and integrating with existing infrastructure. Our company is a pioneer in creating an alternative energy system. We create innovative wind power plants projects, taking into account location, terrain conditions, and energy efficiency.

Read also: Solar Farm Project – What You Need to Know

We carry out the construction of wind farms, ensuring quality, safety, and compliance with standards. We provide regular inspections, maintenance, and repairs to ensure that wind farms operate smoothly. Our solutions involve the collaboration of wind farms with existing energy sources. This allows us to create an alternative energy system that is more sustainable and environmentally friendly.

Read more about wind farm maintenance and wind farm services 

Technology and Alternative Energy: The Direction of Development

Today, technological innovation plays a key role in the transformation of the energy sector. The development of technologies such as photovoltaic panels and modern wind turbines is becoming a cornerstone in building efficient wind farms and increasing the efficiency of the economy and energy systems.

At Electrum, as a leader in the field of energy and information, we aim to create and implement pioneering business solutions that will not only contribute to the sustainable development of the energy sector but also support our clients in achieving their energy and information management goals. Our company is engaged in research on the latest technologies to continuously improve our approach and offer innovative solutions that will contribute to building a better energy future for all of us.

The Climate Tech Trend

One of the trends is the development of so-called Climate Tech, which includes technologies aimed at reducing greenhouse gas emissions and adapting to climate change. This includes innovative solutions for the production, storage, and distribution of energy from renewable sources, such as smart grids, batteries, fuel cells, and electrolyzers. Climate Tech aims not only to increase the share of renewable energy sources in the energy mix but also to improve the efficiency and flexibility of energy systems.

Offshore Wind Farms

Another direction is the construction of increasingly larger and more powerful renewable energy sources. Examples include offshore wind farms, which can generate more energy than those on land due to stronger and more stable winds. Other examples include huge solar power plants that cover hundreds of hectares and use advanced sun-tracking techniques. Such energy sources, however, require adequate infrastructure for the transmission and distribution of energy over long distances.

Energy Storage

A third aspect is energy storage, which allows excess energy from renewable sources to be stored and used when needed. Energy storage can take various forms, such as mechanical (e.g., water dams), chemical (e.g., batteries), thermal (e.g., heat), or electrical (e.g., capacitors). Energy storage helps increase the reliability and stability of energy systems based on renewable energy sources.

Read also: What are the ways of energy storage in Renewable Energy Sector?

Energy Devices and Systems: Summary

In summary, the future of energy devices and systems in renewable energy sources will depend on many factors, such as technological development, energy policy, social preferences, and geographical conditions. One thing is certain: renewable energy sources will play an increasingly significant role in ensuring energy security and climate protection.

The construction of wind farms is an essential element in the development of modern energy systems. By utilizing the latest technologies, wind farms contribute to:

  • Increasing the share of renewable energy in the global energy mix
  • Promoting sustainable development
  • Environmental protection

Electrum is committed to actions that bring lasting change, not only by providing green energy but also by engaging in local community activities and promoting comprehensive renewable energy solutions.

Contact us: Electrum Holding Contact | Engineering-Technology-Consulting Group

Skip to content