Energy Project Management: The Key to Success

Introduction: Why is Energy Project Management So Important? 

In today’s world, as we face the challenge of energy transformation, managing projects in the energy sector has become crucial. Have you ever wondered what makes some projects successful while others fail? The key lies in effective management that combines innovation, strategic planning, and precision. In this article, we will explore how energy project management can contribute to the success of both small and large endeavors. 

Understanding the Specifics of the Energy Market 

The energy market is dynamic and unpredictable. New technologies, legal regulations, and increasing environmental requirements demand continuous adaptation. Understanding these aspects is the first step towards effective management. What technologies are currently trending? What challenges do modern renewable energy projects face? Answers to these questions will help better understand market needs and respond adequately to changes. 

Planning and Strategy in Energy Management 

Every project requires a solid plan and strategy. In energy project management, special attention should be paid to risk analysis, scheduling, and resource allocation. How to set realistic goals? How to manage a team to achieve optimal results? Effective planning is the foundation on which success is built. 

Innovation and Technology – The Heart of Energy Development 

One cannot talk about an energy project without mentioning innovation and new technologies. They are the driving force of the industry. From renewable energy sources to modern energy storage methods – what innovations shape the current energy market? How can project management support the development and implementation of new technologies? 

Team Management: The Key to Efficiency 

Managing people is one of the biggest challenges. In energy projects, not only technical knowledge is important, but also the ability to work in a group, communicate, and resolve conflicts. How to effectively build and manage a project team? How to motivate employees and care for their development? 

Summary: Success Lies in Good Management 

In conclusion, managing energy projects involves a series of challenges but also great opportunities. From understanding the market, through effective planning, innovation, to team management – all these elements contribute to success. Remember, in the world of energy, there is no room for stagnation. Continuous learning, flexibility, and openness to new ideas are qualities that will distinguish the best in the industry. Are you ready to take on this challenge? 

RES in CEE: Overview and Prospects

Farma wiatrowa Thanks to technological advances, renewable energy sources (RES) are becoming increasingly accessible and affordable for the industry. In Poland, a total of 357,093 RES installations will be installed in 2022, of which 356,966 are photovoltaic installations. With the increasing demand for energy and the rising cost of fossil fuels, more and more countries are choosing to invest in RES. Renewable energy is not only an environmental issue. It is also an opportunity for economic development and energy independence.  

Renewable Energy Market in Poland 

In Poland, the RES market is one of the fastest growing sectors. In the context of the move away from the use of fossil fuels in industry, RES represent an alternative to traditional energy sources. RES in Europe are already able to deliver around 60% of the greenhouse gas emission reductions that will be needed to meet the net-zero target by 2050. 

Planned Changes and Challenges 

Farma fotowoltaiczna In Poland, the government plans to increase the share of RES in the energy mix to 23.5% in 2030. However, one of the most important challenges for RES is their variable performance, which depends on weather conditions. As the technology develops, more and more companies are investing in energy storage. It allows electricity to be stored for use at a later date. 

Key Role of RES for Climate Goals  

In summary, RES are an alternative to traditional energy sources and their development is key to achieving climate goals. In Poland, the RES market is developing rapidly. The government plans to increase their share in the energy mix.

The New Era of Energy Networks: What Will the Future Bring?

Zarządzanie sieciami energetycznymi The New Era of Energy Networks: What Will the Future Bring? Thanks to advances in technology, energy grids are becoming smarter and more sustainable. With the development of technologies such as automation and advanced metering systems, it is possible to optimise energy consumption, increase grid reliability and support renewable energy sources. 

Intelligent Power Grids: Modern Solutions for the Future 

Smart grids, or smart grids, are advanced electricity distribution systems. Through the use of modern technologies such as automation and advanced metering systems, it is possible to optimise energy consumption, increase grid reliability and support renewable energy sources. Smart grids help to manage energy resources in a more efficient and sustainable way, resulting in benefits for both consumers and the environment. 

How will smart grids affect the future? Here are some examples:

  • Energy savings: By optimising consumption, smart grids allow for significant energy savings. It’s like finding extra money in your pocket that you didn’t know you had! 
  • Sieci energetyczne Increased grid reliability: Smart grids use automation technologies to control the flow of energy in real time. This reduces energy consumption during peak periods and increases energy availability when you need it most. 
  • Support for renewable energy sources: smart grids enable the integration of renewable energy sources, such as solar panels and wind turbines, into the power grid. This makes it possible to increase the share of renewable energy in the full energy mix  

Let’s Invest Together in the Future of Energy!

Intelligent power grids contribute to the sustainable management of energy resources, bringing benefits both to consumers and the environment. The implementation of these innovative solutions is crucial for achieving energy savings, enhancing network reliability, and providing effective support for renewable energy sources, shaping a promising future for the energy sector. It is therefore worthwhile to invest collectively in the development of these modern technologies to contribute to the sustainable and efficient management of energy. 

Electrum Holding Signs Cooperation Agreement with Gdańsk University of Technology

On December 12, 2023, Electrum Holding signs cooperation agreement with Gdańsk University of Technology. From now on, the organizations will work together to develop modern technologies for energy transformation and decarbonization of the economy, as well as the construction of a Climate Tech Hub for the Baltic Sea region. Professor Dariusz Mikielewicz, the Vice-Rector for organization and development, signed the document on behalf of the Gdańsk University of Technology. Electrum Holding was represented by Grzegorz Stanisławski, Vice President of the Board. 

Politechnika gdańska “It is important for universities, such as the Gdańsk University of Technology, and the industrial world to collaborate. We are signing this agreement at a crucial moment, as the COP28 conference in Dubai, dedicated to climate transformation, concludes today. We demonstrate that our global thinking also has a regional dimension – we want to act within the Baltic Sea area. Through the development of offshore, onshore, and new hydrogen technologies, we will create a new economic sector based on energy transformation and the development of technologies that counteract climate change,” commented Grzegorz Stanisławski. 

The agreement provides for cooperation in the field of education on Climate Tech, development of modern technologies for energy transformation and decarbonization of the economy, strategies for building a Climate Tech Hub for the Baltic Sea region, CO2 emission reduction technologies, and optimization of energy transmission network infrastructure.

Politechnika gdańska The signing of the agreement was preceded by a scientific symposium “Facets of Climate Tech in Energy Transformation and Climate Repair of the Baltic Sea Region – Challenges for Pomerania.” During the meeting, experts discussed challenges related to climate change and innovations that can contribute to combating them. Grzegorz Stanisławski presented a strategic perspective for the development of Climate Tech in the Baltic Sea region, and an innovative hydrogen project presentation by Prof. Krzysztof Kosowski and Paweł Olechnowicz highlighted the potential benefits of an isothermal hydrogen turbine.

The agreement opens new opportunities for cooperation between the scientific world and the industry, aimed at jointly creating innovative solutions that support environmental and climate protection through energy transformation.

About Electrum

Electrum Group is a leading Polish Climate Tech business based in Białystok, offering comprehensive solutions in the field of cutting-edge technology development, project construction, and management in the energy and information sectors. The technological maturity of its experts allows them to deliver products and services that respond to the evolving needs of the industry and businesses in line with the ongoing energy transformation. Electrum creates and implements solutions and builds projects based on the idea of an individual energy mix, striking a balance between the social and environmental responsibility of the business and its economic aspect.

You can find more about the Electrum Group on our social media channels on LinkedIn, Facebooku and Instagramie.

Shaping the Energy of Tomorrow: Visions and Realities

The energy of tomorrow is one of the most important challenges facing humanity in the face of climate change and increasing energy demand. How to meet energy needs while reducing greenhouse gas emissions and ensuring energy security? What strategies and approaches can be employed to exploit the potential of renewable energy sources (RES) like solar, wind, hydro, or biomass? How to integrate RES into existing energy distribution and storage systems? How to use modern technologies and solutions to support RES in the management of facilities such as wind and photovoltaic farms? 

Challenges of the Energy of tomorrow

Odnawialne źródła energii

The answers to these questions are not simple or straightforward. They require cooperation and innovation on many levels: political, economic, social, scientific and technological. They also require awareness and involvement of all stakeholders: producers, distributors, consumers and energy regulators. 

The Role of Renewable Energy Sources in the Global Energy Mix

In Europe and globally, we are seeing an increasing share of RES in the energy mix, driven by both climate commitments and economic and social benefits. According to the International Energy Agency (IEA), RES accounted for about 29% of global electricity production in 2020 and is expected to reach 43% by 2030. In Poland, according to the Energy Regulatory Office, RES accounted for around 15% of national electricity production in 2019 and are expected to reach 23% by 2030. 

Technologies Supporting the Development of Renewable Energy Sources

However, the development of RES also comes with many challenges and constraints. RES are typically distributed and variable, requiring adaptation of energy distribution and storage systems to ensure stability and quality. RES also require new technologies and solutions to enable efficient and intelligent management of RES facilities, such as wind farms and photovoltaic farms. 

Such technologies and solutions include: 

  • Energia Jutra Hybrid systems, combining different energy storage technologies such as batteries, accumulators, electrolysers, fuel cells, compressed air or heat. Hybrid systems allow for increased efficiency and flexibility of energy storage, adapting to the changing nature of RES and consumer demand. 
  • Energy management systems, using advanced algorithms, artificial intelligence, machine learning or the internet of things. Energy management systems allow the optimisation of energy production, distribution and consumption, taking into account market, weather, technical and environmental conditions. Energy management systems also enable the creation of local energy communities, where consumers can produce, store, exchange and sell energy from RES. 
  • Monitoring and diagnostic systems, using sensors, cameras, drones, satellites and artificial intelligence. Monitoring and diagnostic systems allow remote and automatic tracking of the status and performance of RES facilities, detection and prevention of failures, planning and optimisation of maintenance and repairs. 

Challenge and Opportunity

The energy of tomorrow is not only a challenge, but also an opportunity to build a sustainable, secure and equitable energy system based on RES. To achieve this, cooperation and innovation on many levels is needed, as well as the use of modern technologies and solutions to support RES in facility management. Only in this way can we tackle climate change and ensure a better future for us and our children. 

How Energy Storage Systems Are Revolutionizing the Renewable Energy Market?

Energy Storage Systems on the Renewable Energy Market

Energy storage systems are becoming a key component in the revolution of the renewable energy market. For companies like Electrum, which specialize in solar solutions, solar energy storage systems open up new opportunities and transform how we utilize solar power.

In the following article, we will cover:

  • The revolution that energy storage systems have brought to photovoltaic technology in the renewable energy market.
  • The key advantages of these energy storage systems, as well as the challenges related to their selection and effective use.
  • The innovative MESH4U project, which addresses the growing need for optimizing energy storage and promoting sustainable energy sources on an international scale.
  • Comprehensive solar solutions offered by Electrum and their benefits for businesses and the environment.

Renewable Energy Instability: A Challenge for the Polish Energy Market

In the past decade, Poland has built thousands of wind and solar power plants with a combined capacity of over 24 GW. Unfortunately, renewable energy sources are characterized by significant instability due to seasonal wind patterns, sunshine mainly in the summer and only during daylight hours, and periodic droughts affecting river water levels.

Energy storage system. Electrum Holding photo.

Gravitational Energy Storage: An Innovative Solution

Gravitational energy storage systems could revolutionize the renewable energy market. These systems operate similarly to pumped-storage hydroelectric plants but replace water with steel blocks lifted by reversible electric motors using steel cables and pulleys. The main advantages of such storage systems are their consistently high efficiency and over 99.9% recyclability.

Learn about different methods of energy storage in the renewable energy sector: What are the ways of energy storage in Renewable Energy Sector? (electrum.pl)

Balancing Demand: The Role of Energy Storage

Energy storage systems are not only a means to balance electricity demand but also a tool for stabilizing power grids. During periods of overproduction, when demand is low, excess energy can be stored. When energy demand rises, storage systems can supply energy to the grid, helping to stabilize voltage and frequency.

Why Are Energy Storage Systems Crucial for Photovoltaics?

Energy storage systems are crucial for solar energy for several reasons:

  • Optimizing solar energy use: Energy storage systems allow businesses to store excess energy produced by solar panels during the day. This stored energy can be used later or during periods of insufficient sunlight.
  • Energy independence: With photovoltaic energy storage, businesses can become less dependent on traditional electricity suppliers, leading to greater energy independence and stability.
  • Cost savings: Although the initial cost of purchasing an energy storage system can be high, long-term savings can be substantial, especially for energy-intensive companies.

How to Choose an Energy Storage System for Solar Power Plant?

Selecting an energy storage system for solar power plant is crucial for effective use of solar energy. Consider the following factors:

  • Installation size: Take into account the size of the photovoltaic installation and the company’s expected energy needs.
  • Technology choice: There are various energy storage technologies. The right technology should match the client’s specific needs and requirements.
  • Cost vs. efficiency: When choosing an energy storage system, consider not only the price but also the efficiency and durability of the device to maximize investment returns.

Industrial Energy Storage and Its Impact on the Market

Industrial energy storage systems are becoming increasingly popular not only among photovoltaic companies but also in other industrial sectors. Their flexibility and ability to store large amounts of electricity make them a key element in building sustainable and efficient energy systems.

Impact of Energy Storage on Power Grid Stability

Energy storage systems can balance fluctuations in electricity production and demand. This is especially important for renewable energy sources, which are characterized by high instability.

Zero-Emission Direction: Energy Storage as a Key to Success

Energy storage systems enable increased connection capacities with minimal costs for expanding the power grid. This facilitates the transition to a zero-emission economy by increasing the share of renewable energy in the energy mix and phasing out conventional power generation. This should significantly reduce and stabilize energy prices in the country. The conclusion is clear: energy storage systems are a key element in the renewable energy revolution.

MESH4U Project

Electrum, in collaboration with partners, has introduced an innovative hybrid information-energy system that not only enhances the efficiency of electricity storage but also supports the balancing of renewable energy use. This solution stabilizes energy supplies for the Alu-forst manufacturing facility located near Białystok, which uses its own photovoltaic installation.

The MESH4U project, conducted as part of a European initiative in collaboration with the Fraunhofer Institute, Wrocław University of Technology, and other international partners, aims to ensure stable electricity supplies for other European factories.

Learn more:

Electrum has launched Poland’s first hybrid energy-informatics system integrating renewable energy and energy storage.

Project Benefits

One of the key benefits of implementing a hybrid energy-informatics system is reduced operational costs through optimized energy use and intelligent utilization of renewable energy sources.

Advanced algorithms and data analysis enable this solution to predict energy demand and manage production based on renewable energy availability. As a result, it contributes to reducing greenhouse gas emissions and promotes effective use of green energy on an international scale.

Effective Energy Storage System

The MESH4U project also addresses key questions about effective energy storage, becoming increasingly significant in the context of the popularization of green energy sources.

Its international scope and alignment with European energy strategies make it a venture of not only local but also global importance. Co-financed by the National Centre for Research and Development, this project is an important step towards sustainable development and competitiveness in the energy sector.

energy storage system

Solar plus Storage Systems – A solution for the future

At Electrum, we understand the importance of providing customers with comprehensive photovoltaic solutions. Our photovoltaic installation schemes with energy storage are tailored to each client’s specific needs and requirements, ensuring optimal performance and savings.

Read also: How Solar plus Storage Systems Work? – Electrum Holding

With solar and energy storage system, a company can achieve new heights in sustainable energy production while contributing to environmental protection and reducing operational costs.

Explore our services for more information on our comprehensive photovoltaic solutions for businesses.

Need comprehensive renewable energy solutions? Let’s talk:

Contact us

Green hydrogen: Fuel of the future

What is Green Hydrogen?

Green hydrogen refers to hydrogen produced using renewable energy sources such as solar or wind power through the process of water electrolysis. Unlike traditional hydrogen production methods, which rely on fossil fuels, green hydrogen allows for the reduction of greenhouse gas emissions and the carbon footprint. It is a step towards more sustainable and environmentally friendly hydrogen production, which can significantly contribute to combating climate change and reducing dependence on fossil fuels.

How is green hydrogen produced?

This exciting energy development is generated through water electrolysis, a process that uses electricity from renewable sources (RES), such as wind, solar, or biomass. During electrolysis, pure water is split into hydrogen and oxygen. The hydrogen produced in this way is green because it is not generated using fossil fuels, but rather renewable energy. This is a promising step towards a more sustainable energy future!

Green hydrogen production

3 Advantages of green hydrogen

Green hydrogen, as a form of hydrogen produced using renewable energy sources, offers many benefits:

  • Cleanliness – Renewable hydrogen is clean and does not emit carbon dioxide or other greenhouse gases during combustion. This is crucial in the fight against climate change and environmental protection.
  • Versatility – Green hydrogen can be used in many fields. It can power vehicles, heat buildings, store energy, or serve as a raw material for producing other fuels such as ammonia or methanol.
  • High Energy Density – It is efficient because it has a high energy density. This means more energy can be stored and transported in a smaller space compared to other fuels.
    Introducing green hydrogen into our energy ecosystem can contribute to a sustainable future and reduce greenhouse gas emissions.

Importance of green hydrogen production

Green hydrogen in storage tanks at wind farm.

The significance of green hydrogen production is crucial for many aspects of the global energy transition and the fight against climate change. It is considered one of the main pillars in achieving climate neutrality. The vision of a sustainable energy future assumes that green hydrogen can play a significant role in reducing greenhouse gas emissions by replacing traditional energy sources.

Challenges in renewable hydrogen production

The International Energy Agency (IEA) highlights that green hydrogen has the potential to cover up to 19% of global energy demand by 2050. However, to achieve this, several technical, political, and economic conditions must be met, including:

  • Continuous reduction of production and distribution costs of green hydrogen through the development and scaling of appropriate technologies, infrastructure, and markets.
  • Increasing investment and support from both the public and private sectors to enable large-scale development of green hydrogen projects.
  • Establishing common standards and regulations for the quality, safety, and sustainability of green hydrogen production and use at both national and international levels.

In this way, green hydrogen can become a strategic element of the future global energy infrastructure, contributing to the reduction of greenhouse gas emissions and the achievement of sustainable development goals.

Renewable hydrogen storage tanks at wind farm.

Hydrogen Storage Tanks at a Wind Farm

Green hydrogen international – the fuel of the future in Global Energy

Renewable hydrogen is an innovative energy resource with the potential to change the face of global energy. Its production and use can have a huge impact on reducing greenhouse gas emissions and improving the quality of life for people worldwide. As a company engaged in the Climate Tech sector, we aim to set new standards in sustainable development and actively promote green hydrogen as a key element of the energy transition.

Electrum and the energy revolution

Our role as a participant in this energy revolution does not end with declarations – we are involved in practical actions that accelerate the development of green hydrogen infrastructure in Poland. We support innovative R&D projects aimed at improving the efficiency of green hydrogen production and distribution. Our partnerships, both nationally and internationally, allow us to collaborate with leading scientific institutions, technology companies, and governments to jointly develop green hydrogen infrastructure.

Learn About Our Mission: Who We Are – Electrum Holding

Summary – Is it worth investing in green hydrogen?

Green H₂

We are convinced that investing in green hydrogen is not only a step toward achieving climate goals but also an opportunity to create new jobs, develop modern technologies, and increase energy independence in many regions. Therefore, we strive to raise public awareness of the benefits of green hydrogen and promote its widespread use in various sectors of the economy.

Read also: Energy Storage Methods in the RES Industry

Through our commitment to the development of green hydrogen, we aim to be a driving force in the energy transition, bringing real benefits both to the natural environment and society as a whole. We believe that green hydrogen is a key element in the fight against climate change and an essential component on the path to a sustainable energy future.

Contact Us Contact – Electrum Holding

Green Energy: An Introduction to Renewable Sources

Alternative Energy Systems: The Revolution in Energy 

Have you ever wondered what the world will look like when we move away from fossil fuels? The answer lies in alternative energy systems. These innovations are not just the technology of the future, but above all, a response to today’s climate challenges. They are key to sustainable development and provide energy security for future generations. 

Construction of Photovoltaic and Wind Farms: Solar and Wind Giants 

When we talk about renewable energy sources (RES), photovoltaic farms and wind farms mainly come to mind. Their construction is a significant engineering challenge. PV panels that convert sunlight into electrical energy and massive wind turbines dancing with the wind are not only spectacular but also highly efficient. They form the foundation of modern, ecological energy infrastructure. 

Alternative Energy: More Than a Trend 

Alternative energy is not just a fashion, but a necessity. Investments in renewable energy sources (RES) are steps towards a future where energy will be clean, renewable, and accessible to everyone. It’s important to emphasize that this is not only a matter of environmental protection but also economic profitability. 

General Contractor for RES: Architects of the New Energy Era 

The role of the general contractor in RES projects is crucial. They are responsible for comprehensive engineering, technological, and business solutions that meet the specific needs of the energy market. Their work affects the effectiveness and efficiency of investments, which has a direct impact on the success of RES projects. 

Climate Tech: Technology for the Earth 

Climate tech is more than just words. These are specific actions, products, and services that have a real impact on protecting our planet. It is a segment that is dynamically developing in response to the challenges of climate change. By focusing on innovation and sustainable technologies, we contribute to creating a better future for us and subsequent generations. 

Summary: The Energy of the Future 

Green energy is not just a trend, but a necessity of our times. The development of alternative energy systems, the construction of photovoltaic and wind farms, and comprehensive solutions in the field of RES are steps we must take to ensure a sustainable future for our planet. Remember, every decision regarding energy has a direct impact on the environment in which we live. Only through responsible actions and investments can we achieve the goal of sustainable development. 

Energy That Blows: The Potential of Wind Farms in Poland

Wind is one of the cleanest and cheapest sources of renewable energy (RES). In Poland, where more than 70% of electricity comes from coal, the development of wind farms can be a key step towards a green transition and reducing greenhouse gas emissions. Wind farms are clusters of wind turbines that harness the power of the wind to generate electricity. How big is the wind energy potential in Poland and what are the benefits of building wind farms? 

According to a report by the Polish Wind Energy Association (PWEA), Poland has the potential to install more than 50 GW of onshore and offshore wind capacity by 2050. This means that wind could cover more than 40% of the country’s electricity needs. Currently, Poland has around 6 GW of onshore wind capacity and plans to build another 11 GW offshore by 2030. This makes Poland one of the leaders in the region in terms of wind energy development. 

The construction of wind farms has many benefits for the economy, the environment and society. Firstly, wind farms are a source of cheap and stable energy that does not depend on fossil fuel prices. According to PWEA, the cost of generating energy from wind onshore is around 200 PLN/MWh and offshore around 300 PLN/MWh, while the cost of energy from coal is around 350 PLN/MWh. Secondly, wind farms contribute to the reduction of CO2 emissions and other pollutants that have a negative impact on human health and climate. According to PWEA, onshore wind farms avoided more than 14 million tonnes of CO2 emissions in 2019, equivalent to the annual emissions of more than 7 million passenger cars. Thirdly, wind farms create new jobs and income for local communities. According to PWEA, the wind energy sector employed more than 12,000 people in 2019 and could create more than 77,000 new jobs by 2030. In addition, wind farms pay local taxes and fees, which can be used for infrastructure development, education, culture and environmental protection. 

Wind farms are therefore an important part of Poland’s RES build-up, which aims to increase the share of renewable energy to 23% by 2030 and to 50% by 2050. To achieve this, however, appropriate policy and regulation is needed to support investment and public acceptance of wind farms. Some of the challenges faced by the industry are legal restrictions, bureaucracy, public resistance and lack of grid infrastructure. Therefore, dialogue and cooperation between all stakeholders, including government, local authorities, investors, operators, NGOs and residents, is necessary. Only in this way can the full potential of wind energy be realised. 

The Sun above Vistula river: Photovoltaic Development in Poland

Photovoltaics in Poland is one of the fastest growing renewable energy sectors, and one of the most cost-effective ways for companies to reduce their electricity costs.

The development of photovoltaics in Poland, from the perspective of companies and industry, is an investment with many benefits, both economic and environmental. Here are some of them:  

  • Reduction of electricity bills by up to 90%. On average, electricity costs account for about 20% of a company’s overall expenditure, and in some industries even more. Photovoltaics allow you to produce your own energy, which is cheaper and more stable than that from the grid.  
  • Increased energy independence and security of supply. Photovoltaics ensure that your business continues to operate even in the event of a grid failure or energy unavailability. In addition, thanks to energy storage, surplus energy can be stored for own use. 
  • Improved corporate image and environmental awareness. Photovoltaics is one of the cleanest and most environmentally friendly ways of generating energy. By using photovoltaics, a company demonstrates its commitment to climate protection and the reduction of CO2 emissions. 

The development of photovoltaics for companies in Poland operates on similar principles to photovoltaics for single-family houses, with some differences. Depending on the power and type of installation, a company can benefit from one of the following solutions:  

  • RES micro-installations of less than 150 kWp – for smaller companies. In this case, the company can benefit from net-metering or net-billing, i.e. the billing of surplus photovoltaic energy to the grid.  
  • Small RES installations from 150 kWp to 1 MWp – for hotels, spas, etc. In this case, the company can sell photovoltaic energy to the grid on the basis of a PPA (Power Purchase Agreement), i.e. a long-term agreement to purchase energy at a fixed price.  
  • RES installations above 1 MWp – for production facilities. In this case, the company can sell photovoltaic energy through the RES auction, a support system for renewable energy producers  

Photovoltaics for companies is an investment that pays for itself after seven years on average, and sometimes even faster, which is why we are also seeing intensive development in Poland. The development of photovoltaics in Poland will intensify in the coming years. According to the report ‚Photovoltaic market in Poland 2022’, depending on the scenario, the market may grow by as much as 343% relative to 2021, to 34.1 GWp of cumulative capacity in 2027. This growth will be driven by rising electricity prices, the development of the prosumer market, government and EU support, as well as the growing environmental awareness of society and entrepreneurs. Photovoltaics in Poland is therefore becoming not only a beneficial but also a necessary solution for business.  

Skip to content